3.3.78 \(\int \frac {x^3}{\sqrt {c+d x^3} (4 c+d x^3)} \, dx\) [278]

3.3.78.1 Optimal result
3.3.78.2 Mathematica [A] (verified)
3.3.78.3 Rubi [A] (verified)
3.3.78.4 Maple [C] (warning: unable to verify)
3.3.78.5 Fricas [B] (verification not implemented)
3.3.78.6 Sympy [F]
3.3.78.7 Maxima [F]
3.3.78.8 Giac [F]
3.3.78.9 Mupad [F(-1)]

3.3.78.1 Optimal result

Integrand size = 26, antiderivative size = 66 \[ \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx=\frac {x^4 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},-\frac {d x^3}{4 c},-\frac {d x^3}{c}\right )}{16 c \sqrt {c+d x^3}} \]

output
1/16*x^4*AppellF1(4/3,1/2,1,7/3,-d*x^3/c,-1/4*d*x^3/c)*(1+d*x^3/c)^(1/2)/c 
/(d*x^3+c)^(1/2)
 
3.3.78.2 Mathematica [A] (verified)

Time = 10.04 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.02 \[ \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx=\frac {x^4 \sqrt {\frac {c+d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {d x^3}{4 c}\right )}{16 c \sqrt {c+d x^3}} \]

input
Integrate[x^3/(Sqrt[c + d*x^3]*(4*c + d*x^3)),x]
 
output
(x^4*Sqrt[(c + d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, -((d*x^3)/c), -1/4*(d* 
x^3)/c])/(16*c*Sqrt[c + d*x^3])
 
3.3.78.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {\sqrt {\frac {d x^3}{c}+1} \int \frac {x^3}{\left (d x^3+4 c\right ) \sqrt {\frac {d x^3}{c}+1}}dx}{\sqrt {c+d x^3}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {x^4 \sqrt {\frac {d x^3}{c}+1} \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},-\frac {d x^3}{4 c},-\frac {d x^3}{c}\right )}{16 c \sqrt {c+d x^3}}\)

input
Int[x^3/(Sqrt[c + d*x^3]*(4*c + d*x^3)),x]
 
output
(x^4*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1, 1/2, 7/3, -1/4*(d*x^3)/c, -((d*x 
^3)/c)])/(16*c*Sqrt[c + d*x^3])
 

3.3.78.3.1 Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
3.3.78.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 4.36 (sec) , antiderivative size = 696, normalized size of antiderivative = 10.55

method result size
default \(-\frac {2 i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}}{-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{3 d^{2} \sqrt {d \,x^{3}+c}}+\frac {4 i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{3}+4 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \Pi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{6 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {d \,x^{3}+c}}\right )}{9 d^{4}}\) \(696\)
elliptic \(-\frac {2 i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}}{-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{3 d^{2} \sqrt {d \,x^{3}+c}}+\frac {4 i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{3}+4 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \Pi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{6 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {d \,x^{3}+c}}\right )}{9 d^{4}}\) \(696\)

input
int(x^3/(d*x^3+4*c)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/3*I/d^2*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2) 
/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3)) 
/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/ 
d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3)) 
^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/ 
2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d 
*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1 
/2))+4/9*I/d^4*2^(1/2)*sum(1/_alpha^2*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I 
*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*( 
-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I 
*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/ 
2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^( 
2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3 
*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2 
)*d/(-c*d^2)^(1/3))^(1/2),1/6/d*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*( 
-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/ 
c,(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d 
^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d+4*c))
 
3.3.78.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2300 vs. \(2 (52) = 104\).

Time = 0.71 (sec) , antiderivative size = 2300, normalized size of antiderivative = 34.85 \[ \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx=\text {Too large to display} \]

input
integrate(x^3/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")
 
output
1/36*(2*(16/27)^(1/6)*d^2*(-1/(c*d^8))^(1/6)*log((4*d^3*x^9 - 264*c*d^2*x^ 
6 - 288*c^2*d*x^3 - 128*c^3 - 24*2^(2/3)*(c*d^8*x^8 - 7*c^2*d^7*x^5 - 8*c^ 
3*d^6*x^2)*(-1/(c*d^8))^(2/3) - 96*2^(1/3)*(c*d^5*x^7 - c^2*d^4*x^4 - 2*c^ 
3*d^3*x)*(-1/(c*d^8))^(1/3) + 3*(72*(16/27)^(1/6)*c*d^3*x^5*(-1/(c*d^8))^( 
1/6) + 9*(16/27)^(5/6)*(c*d^9*x^7 - 16*c^2*d^8*x^4 - 8*c^3*d^7*x)*(-1/(c*d 
^8))^(5/6) + 8*sqrt(1/3)*(5*c*d^6*x^6 - 20*c^2*d^5*x^3 - 16*c^3*d^4)*sqrt( 
-1/(c*d^8)))*sqrt(d*x^3 + c))/(d^3*x^9 + 12*c*d^2*x^6 + 48*c^2*d*x^3 + 64* 
c^3)) - 2*(16/27)^(1/6)*d^2*(-1/(c*d^8))^(1/6)*log((4*d^3*x^9 - 264*c*d^2* 
x^6 - 288*c^2*d*x^3 - 128*c^3 - 24*2^(2/3)*(c*d^8*x^8 - 7*c^2*d^7*x^5 - 8* 
c^3*d^6*x^2)*(-1/(c*d^8))^(2/3) - 96*2^(1/3)*(c*d^5*x^7 - c^2*d^4*x^4 - 2* 
c^3*d^3*x)*(-1/(c*d^8))^(1/3) - 3*(72*(16/27)^(1/6)*c*d^3*x^5*(-1/(c*d^8)) 
^(1/6) + 9*(16/27)^(5/6)*(c*d^9*x^7 - 16*c^2*d^8*x^4 - 8*c^3*d^7*x)*(-1/(c 
*d^8))^(5/6) + 8*sqrt(1/3)*(5*c*d^6*x^6 - 20*c^2*d^5*x^3 - 16*c^3*d^4)*sqr 
t(-1/(c*d^8)))*sqrt(d*x^3 + c))/(d^3*x^9 + 12*c*d^2*x^6 + 48*c^2*d*x^3 + 6 
4*c^3)) + (16/27)^(1/6)*(sqrt(-3)*d^2 + d^2)*(-1/(c*d^8))^(1/6)*log((8*d^3 
*x^9 - 528*c*d^2*x^6 - 576*c^2*d*x^3 - 256*c^3 + 24*2^(2/3)*(c*d^8*x^8 - 7 
*c^2*d^7*x^5 - 8*c^3*d^6*x^2 + sqrt(-3)*(c*d^8*x^8 - 7*c^2*d^7*x^5 - 8*c^3 
*d^6*x^2))*(-1/(c*d^8))^(2/3) + 96*2^(1/3)*(c*d^5*x^7 - c^2*d^4*x^4 - 2*c^ 
3*d^3*x - sqrt(-3)*(c*d^5*x^7 - c^2*d^4*x^4 - 2*c^3*d^3*x))*(-1/(c*d^8))^( 
1/3) + 3*sqrt(d*x^3 + c)*(9*(16/27)^(5/6)*(c*d^9*x^7 - 16*c^2*d^8*x^4 -...
 
3.3.78.6 Sympy [F]

\[ \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx=\int \frac {x^{3}}{\sqrt {c + d x^{3}} \cdot \left (4 c + d x^{3}\right )}\, dx \]

input
integrate(x**3/(d*x**3+4*c)/(d*x**3+c)**(1/2),x)
 
output
Integral(x**3/(sqrt(c + d*x**3)*(4*c + d*x**3)), x)
 
3.3.78.7 Maxima [F]

\[ \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx=\int { \frac {x^{3}}{{\left (d x^{3} + 4 \, c\right )} \sqrt {d x^{3} + c}} \,d x } \]

input
integrate(x^3/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")
 
output
integrate(x^3/((d*x^3 + 4*c)*sqrt(d*x^3 + c)), x)
 
3.3.78.8 Giac [F]

\[ \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx=\int { \frac {x^{3}}{{\left (d x^{3} + 4 \, c\right )} \sqrt {d x^{3} + c}} \,d x } \]

input
integrate(x^3/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="giac")
 
output
integrate(x^3/((d*x^3 + 4*c)*sqrt(d*x^3 + c)), x)
 
3.3.78.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx=\int \frac {x^3}{\sqrt {d\,x^3+c}\,\left (d\,x^3+4\,c\right )} \,d x \]

input
int(x^3/((c + d*x^3)^(1/2)*(4*c + d*x^3)),x)
 
output
int(x^3/((c + d*x^3)^(1/2)*(4*c + d*x^3)), x)